3.8 Proceedings Paper

Open Loop Position Control of Soft Continuum Arm Using Deep Reinforcement Learning

出版社

IEEE
DOI: 10.1109/icra.2019.8793653

关键词

-

资金

  1. NSF [CMMI-1454276]
  2. NIFA-NSF joint National Robotics Initiative program

向作者/读者索取更多资源

Soft robots undergo large nonlinear spatial deformations due to both inherent actuation and external loading. The physics underlying these deformations is complex, and often requires intricate analytical and numerical models. The complexity of these models may render traditional model-based control difficult and unsuitable. Model-free methods offer an alternative for analyzing the behavior of such complex systems without the need for elaborate modeling techniques. In this paper, we present a model-free approach for open loop position control of a soft spatial continuum arm, based on deep reinforcement learning. The continuum arm is pneumatically actuated and attains a spatial workspace by a combination of unidirectional bending and bidirectional torsional deformation. We use Deep-Q Learning with experience replay to train the system in simulation. The efficacy and robustness of the control policy obtained from the system is validated both in simulation and on the continuum arm prototype for varying external loading conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据