4.7 Article

Peptide Half-Life Extension: Divalent, Small-Molecule Albumin Interactions Direct the Systemic Properties of Glucagon-Like Peptide 1 (GLP-1) Analogues

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 60, 期 17, 页码 7434-7446

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.7b00787

关键词

-

资金

  1. Innovation Fund Denmark

向作者/读者索取更多资源

Noncovalent binding of biopharmaceuticals to human serum albumin protects against enzymatic degradation and renal clearance. Herein, we investigated the effect of mono- cor divalent small-molecule albumin binders for half-life extension of peptides. For proof-of-principle, the clinically relevant glucagon-like peptide 1 (GLP-1) was functionalized with diflunisal, indomethacin, or both. In vitro, all GLP-1 analogues had subnanomolar GLP-1 receptor potency. Surface plasmon resonance revealed that both small molecules were able to confer albumin affinity to GLP-1 and indicated that affinity is increased for divalent analogues. In lean mice, the divalent GLP-1 analogues were superior to monovalent analogues with respect to control of glucose homeostasis and suppression of food intake. Importantly, divalent GLP-1 analogues showed efficacy comparable to liraglutide, an antidiabetic GLP-1 analogue that carries a long-chain fatty acid. Finally, pharmacokinetic investigations of a divalent GLP-1 analogue demonstrated a promising gain in circulatory half-life and absorption time compared to its monovalent equivalent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据