3.8 Proceedings Paper

Design and Characterization of a Novel Robotic Surface for Application to Compressed Physical Environments

出版社

IEEE
DOI: 10.1109/icra.2019.8794043

关键词

-

向作者/读者索取更多资源

Developments of robot arms are countless, but there has been little focus on robot surfaces for the reshaping of a habitable space-especially compliant surfaces. In this paper we introduce a novel, tendon-driven, robot surface comprised of aggregated, overlapping panels organized in a herringbone pattern. The individual 3D-printed panels and their behavior as an aggregation are inspired by the form and behavior of a pinecone. This paper presents our concept, design, and realization of this robot, and compares our prototype to simulations of four physical configurations that are formally distinct and suggestive of how the surface might be applied to habitable, physical space in response to human needs and wants. For the four configurations studied, we found a validating match between prototype and simulations. The paper concludes with a consideration of potential applications for robot surfaces like this one.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据