3.8 Proceedings Paper

Integrated UWB-Vision Approach for Autonomous Docking of UAVs in GPS-denied Environments

出版社

IEEE
DOI: 10.1109/icra.2019.8793851

关键词

-

向作者/读者索取更多资源

Though vision-based techniques have become quite popular for autonomous docking of Unmanned Aerial Vehicles (UAVs), due to limited field of view (FOV), the UAV must rely on other methods to detect and approach the target before vision can be used. In this paper we propose a method combining Ultra-wideband (UWB) ranging sensor with vision-based techniques to achieve both autonomous approaching and landing capabilities in GPS-denied environments. In the approaching phase, a robust and efficient recursive least-square optimization algorithm is proposed to estimate the position of the UAV relative to the target by using the distance and relative displacement measurements. Using this estimate, UAV is able to approach the target until the landing pad is detected by an onboard vision system, then UWB measurements and vision-derived poses are fused with onboard sensor of UAV to facilitate an accurate landing maneuver. Real-world experiments are conducted to demonstrate the efficiency of our method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据