4.5 Article

Electrochemical hydrogen production on a metal-free polymer

期刊

SUSTAINABLE ENERGY & FUELS
卷 3, 期 12, 页码 3387-3398

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9se00687g

关键词

-

资金

  1. Goran Gustafssons Stiftelse [25034 300523]
  2. Knut Alice Wallenberg Foundation (WWSC)
  3. Peter Wallenberg Foundation [PWS2016-0010]
  4. Vetenskapsradet
  5. National Research Centre Kurchatov Institute [1808]
  6. Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

向作者/读者索取更多资源

The exploration for true electrocatalytic reactions at organic conducting polymer electrodes, including chemisorption of a reactant and desorption of a product, is receiving renewed interest due to the profound implications it could have on low-cost large area electrochemical energy technology. Here, we finalize the debate about the ability of an organic electrode, more specifically poly(3,4-ethylenedioxythiophene) (PEDOT), to be an electrocatalyst for hydrogen production. This paper proves and covers fundamental studies of the hydrogen evolution reaction (HER) on PEDOT films. Both theory based on DFT (Density Functional Theory) and experimental studies using electrochemical techniques and operando mass spectrometry suggest a Volmer-Heyrovsky mechanism for the actual HER on PEDOT. It is shown that PEDOT reaches an exchange current density comparable to that of metals (i.e. Cu, Ni, and Au) and in addition does not form passivating oxide layers or suffer from chemical corrosion in acidic media. Finally, an electrolyzer stack using the organic polymer electrode demonstrates HER performance in real applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据