4.6 Article

Two-dimensional NaxSiS as a promising anode material for rechargeable sodium-based batteries: ab initio material design

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 44, 页码 24326-24332

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp03352a

关键词

-

向作者/读者索取更多资源

The rapidly rising demand for energy storage systems presents an imperative need to develop sodium-ion batteries with high energy density, high conductivity, and low barrier energy. In this work, we present a Density Functional study on the properties of two-dimensional NaxSiS as a promising anode material for rechargeable sodium-ion batteries. Energetically stable structures of Na-adsorbed silicene sulfide NaxSiS with various Na contents were explored. It is found that the adsorption energy of a Na atom is higher than -0.4 eV and it decreases with increasing Na content. The electronic structure of pristine silicene sulfide shows semiconductor behaviour with a bandgap of 0.99 eV, while the Na-adsorbed SiS exhibits metallic characteristics. The highest theoretical capacity of 187.2 mA h g(-1), which is higher than that of well-known two dimensional materials, is found in the fully intercalated phase of SiS Na0.5SiS which corresponds to per side layer. Furthermore, Na ions can diffuse along two typical pathways on the surface of SiS with a small barrier of 183 meV which is much smaller than that of the two dimensional LixSiS, NaxTiS(2), and NaxMoS2. All these characteristics suggest that silicene sulfide SiS can be expected to be a promising anode material for sodium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据