4.1 Article

Spectral Index-Based Monitoring (2000-2017) in Lowland Forests to Evaluate the Effects of Climate Change

期刊

GEOSCIENCES
卷 9, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/geosciences9100411

关键词

climate change; drought; forest monitoring; NDVI; EVI; MODIS

资金

  1. Hungarian National Research Fund [OTKA K 124648]

向作者/读者索取更多资源

In the next decades, climate change will put forests in the Hungarian Great Plain in the Carpathian Basin to the test, e.g., changing seasonal patterns, more intense storms, longer dry periods, and pests are expected to occur. To aid in the decision-making process for the conservation of ecosystems depending on forestry, how woods could adapt to changing meso- and microclimatic conditions in the near future needs to be defined. In addition to trendlike warming processes, calculations show an increase in climate extremes, which need to be monitored in accordance with spatial planning, at least for medium-scale mappings. We can use the MODIS sensor dataset if up-to-date terrestrial conditions and multi-decadal geographical processes are of interest. For geographic evaluations of changes, we used vegetation spectral indices; Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI), based on the summer half year, 16-day MODIS data composites between 2000 and 2017 in an intensively forested study area in the Hungarian Great Plain. We delineated forest areas on the Danube-Tisza Interfluve using Corine Land Cover maps (2000, 2006, and 2012). Mid-year changes over the nearly two-decade-long period are currently in balance; however, based on their reactions, forests are highly sensitive to abrupt changes caused by extreme climatic events. The higher occurrence of years or periods with extreme water shortages marks an observable decrease in biomass production, even in shorter index time series, such as that between 2004 and 2012. In the drought-stricken July-August periods, the effect of a dry year, subsequent to years with more precipitation, immediately pushes back the green mass and the reduction in the biomass production could become persistent, according to climatology predictions. The changes of specific sub-periods in the vegetation period can be evaluated even in a relatively short, 18-year data series, including the change in the growing values of the vegetative growth in spring or the increase in the summertime biomass production. Standardized differences highlight spatial differences in the biomass production; in response to years with the highest (negative) biomass difference; typically, the northern and southwestern parts of the Danube-Tisza Interfluve in the study area have longer lasting losses in biomass production. A comparison of NDVI and EVI values with the PaDI drought index and the vegetation indices of LANDSAT Operational Land Imager sensor respectively confirms our results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据