4.5 Article

Soil Biological Fertility and Bacterial Community Response to Land Use Intensity: A Case Study in the Mediterranean Area

期刊

DIVERSITY-BASEL
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/d11110211

关键词

bacterial community structure; biological fertility index; land use; microbial biomass; microbial respiration; ribosomal RNA copy numbers

资金

  1. Regione Puglia, Italy

向作者/读者索取更多资源

The current study was performed to investigate the effects of three different long-term land use intensities on adjacent soil plots, namely a winter wheat field, a grass-covered vineyard, and a cherry farm, on soil biochemical, microbial, and molecular parameters. The results showed the maximum content of soil organic matter (SOM) and microbial biomass carbon (MBC) observed in the grass-covered vineyard. Basal respiration (BSR) and the cumulated respiration (CSR) after 25 days of incubation were significantly higher in the grass-covered vineyard and cherry farm, respectively (BSR 11.84 mg CO2-C kg(-1) soil d(-1), CSR 226.90 mg CO2-C kg(-1) soil). Grass-covered vineyard showed the highest soil biological fertility index (BFI) score (20) and ranked in the class IV (good) of soil biological fertility. Cereal field and cherry farm had lower BFI scores and the corresponding BFI class was III (medium). In addition, the maximum ribosomal RNA copy number and the highest abundance of oligotrophic bacterial groups (25.52% Actinobacteria, 3.45% Firmicutes, and 1.38% Acidobacteria) were observed in the grass-covered vineyard. In conclusion, the grass-covered vineyard is a more conservative system and could have a large potential to improve total carbon storage in soil, mainly because of the cover crop residue management and the low soil perturbation through the no-tillage system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据