4.1 Article

Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures

期刊

FRONTIERS IN ROBOTICS AND AI
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/frobt.2019.00127

关键词

stretchable; capacitive; strain sensors; auxetic structures; soft robotics; wearable devices

类别

资金

  1. Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) through the Leading Initiative for Excellent Young Researchers (LEADER)

向作者/读者索取更多资源

Highly stretchable sensors that can detect large strains are useful in deformable systems, such as soft robots and wearable devices. For stretchable strain sensors, two types of sensing methods exist, namely, resistive and capacitive. Capacitive sensing has several advantages over the resistive type, such as high linearity, repeatability, and low hysteresis. However, the sensitivity (gauge factor) of capacitive strain sensors is theoretically limited to 1, which is much lower than that of the resistive-type sensors. The objective of this study is to improve the sensitivity of highly stretchable capacitive strain sensors by integrating hierarchical auxetic structures into them. Auxetic structures have a negative Poisson's ratio that causes increase in change in capacitance with applied strains, and thereby improving sensitivity. In order to prove this concept, we fabricate and characterize two sensor samples with planar dimensions 60 mm x 16 mm. The samples have an acrylic elastomer (3M, VHB 4905) as the dielectric layer and a liquid metal (eutectic gallium-indium) for electrodes. On both sides of the sensor samples, hierarchical auxetic structures made of a silicone elastomer (Dow Corning, Sylgard 184) are attached. The samples are tested under strains up to 50% and the experimental results show that the sensitivity of the sensor with the auxetic structure exceeds the theoretical limit. In addition, it is observed that the sensitivity of this sensor is roughly two times higher than that of a sensor without the auxetic structure, while maintaining high linearity (R-2 = 0.995), repeatability (>= 10(4) cycles), and low hysteresis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据