4.5 Article

A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60

期刊

HELIYON
卷 5, 期 11, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2019.e02675

关键词

Materials science; Materials chemistry; Copper phthalocyanine; Gold nanoparticles; Fullerene; Solar cell; PEDOT:PSS

资金

  1. Deanship of Scientific Research at Umm Al-Qura University [43405060]

向作者/读者索取更多资源

This work studied the role of gold nanoparticles (AuNPs) with different spherical sizes mixed with poly (3, 4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) as a hole transfer layer to enhance the efficiency (ITO/PEDOT:PSS (AuNPs)/CuPc/C-60/Al) organic photovoltaic cell (OPV). AuNPs were synthesized using the thermochemical method and the results of the transmission electron microscope (TEM) images showed that the gold nanoparticles mostly dominated by spherical shapes and sizes were calculated in the range (12-23 nm). Measurements of UV-VIS spectra for AuNPs have shown that the surface plasmon resonance shifted to a higher wavelength with decreasing the particle size. Surface morphology and absorption spectra of OPV cells were studied using atomic force microscope and UV-VIS spectrometer techniques. The efficiency of the OPV cell was calculated without and with AuNPs. Efficiency was increased from 0.78% to 1.02% due to the embedded of AuNPs with (12 nm) in PEDOT/PSS. The increase in the light absorption in CuPc is due to the good transparent conducing of PEDOT:PSS and the increase in the electric field around AuNPs embedded in PEDOT:PSS and inbuilt electric field at the interfacial between CuPc and C-60 is due to the surface plasmon resonance of AuNPs. The increase in these two factors increase the exciton generation in CuPc, dissociation at the interfacial layer, and charge carrier transfer which increases the collection of electrons and holes at cathode and anode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据