4.7 Review

Current progress of metallic and carbon-based nanostructure catalysts towards the electrochemical reduction of CO2

期刊

INORGANIC CHEMISTRY FRONTIERS
卷 6, 期 12, 页码 3363-3380

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9qi00484j

关键词

-

资金

  1. National Natural Science Foundation of China [51772957, 51772024]

向作者/读者索取更多资源

The gradual increase in atmospheric carbon dioxide concentration has led to a series of environmental problems such as global warming; therefore, the large-scale conversion of carbon dioxide is urgent. In this regard, the electrochemical CO2 reduction (ECR) technology can reduce the greenhouse gas CO2 to low-carbon fuels and economically valuable chemicals, which is a promising method to achieve carbon cycle termination. Catalysts are critical for ECR due to high activation energy requirements and the endothermic nature of the reaction. This review describes the recent advances in the design of nanostructured inorganic catalysts for ECR, strategies to improve the catalytic performance of these catalysts, and particularly the structure-performance relationship of catalysts. After a brief introduction to the background and basic principles of ECR, we have summarized the crucial factors (size, morphology, crystal facets, defects, interface, surface, and oxide derivation) determining the performance of CO2 electroreduction. Finally, we have discussed the methods to improve the reaction efficiency and selectivity of catalysts and introduced the prospects for their future developments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据