4.6 Article

Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device applications

向作者/读者索取更多资源

Herein, we report the preparation and characterizations of polyvinyl alcohol (PVA) and polystyrene sulfonic acid (PSSA) blend nanocomposites reinforced with carbon black nanoparticles (CBNPs). The structural changes, interaction between CBNPs and the PVA/PSSA blend matrix were identified by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies. The surface morphology of PVA/PSSA/CBNP nanocomposite films were evaluated using polarized optical microscopy (POM) and scanning electron microscopy (SEM) and the mechanical properties were evaluated using bench top tester. In addition, the dielectric properties of PVA/PSSA/CBNP nanocomposite films with different loadings of CBNPs were carried out in the frequency range 50 Hz to 20 MHz at various temperatures ranging from 40 to 150 A degrees C. The dielectric constant as high as 1851 (50 Hz, 150 A degrees C) was obtained for the PVA/PSSA/CBNP nanocomposite film with 5 wt% CBNPs loading and for the same compositions the dielectric loss was about 3.9 (50 Hz, 150 A degrees C. The dielectric results demonstrate that the dispersion of CBNPs has a significant control on the percolation threshold of nanocomposites. The enhanced dielectric performance of these nanocomposites infers that CBNPs are ideal nanofillers for the development of novel high-k materials with low percolation threshold for flexible energy storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据