4.6 Article

Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon

期刊

JOURNAL OF MATERIALS SCIENCE
卷 52, 期 13, 页码 7664-7676

出版社

SPRINGER
DOI: 10.1007/s10853-017-1055-0

关键词

-

资金

  1. National Natural Science Foundation for Youth Science [JZ2016GJQN0851]
  2. National Science and Technology Support Program from Hefei University of Technology [2012BAD30B01]

向作者/读者索取更多资源

Different types of acid pretreatment are known to influence the removal of certain components from pine wood sawdust, due to differences in the acid hydrolysis, which also predetermine the final formation and adsorptive properties of the produced activated carbon (AC) through subsequent potassium hydroxide activation. AC made by using phosphorous acid as an acid pretreatment had the largest absorption capacity of methylene blue (MB) dye due to its highest acidity. Subsequently, the effects on the adsorption variables for this AC such as initial pH, MB concentration, contact time and temperature were investigated. The resulting adsorption process was classified as pseudo-second-order kinetic model, and the Langmuir isotherm model better described the equilibrium data in comparison with the Freundlich isotherm model. The outcome showed that a lower temperature had an increased adsorption capacity of sawdust-derived AC pretreated with phosphorous acid, which allowed maximum adsorption capacities of 303.03 mg/g at 30 A degrees C, implying that the adsorption was an endothermic process. Phosphorous acid pretreatment and activation processes proved to be an effective strategy to prepare highly porous AC from sawdust, with high potential to cationic dye removal from liquid phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据