4.6 Article

In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 47, 页码 27032-27040

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta09372a

关键词

-

资金

  1. National Natural Science Foundation of China [51973047]
  2. Natural Science Foundation of Zhejiang Province [LY18E030005]
  3. Project for the Science and Technology Program of Hangzhou [20191203B16]
  4. Fluor-Silicon Fine Chemical and Material Manufacturing Collaborative Innovation Centre Open Foundation [FSi2018B005]

向作者/读者索取更多资源

Lightweight polymer foam materials that are resilient and flame retardants are required in various practical applications. However, it has remained a great challenge to realize high-temperature resilience and flame resistance in polymer foams at an ultra-low loading of flame retardant additives. Herein we report a facile, low-cost and scalable strategy to create unprecedented high-performance polydimethylsiloxane foam materials by the in situ reactive self-assembly of graphene oxide (GO) sheets. Addition of 0.10 wt% GO produces compact and ultrathin protective nano-coatings on the foam surface. Moreover, such nano-coatings are chemically bonded with the foam skeleton. As a result, the nano-coatings produce significantly improved thermal stability and high-temperature resilience as well as synergistic fire shielding properties, enabling similar to 57% and similar to 87% reduction in the heat release rate and total smoke rate at 0.10 wt% and a limiting oxygen index of >31% at 0.50 wt%. By observing the burnt surface zones, we demonstrate that the thermal decomposition of PDMS molecules transforms them into inorganic nano-silica layers and promotes GO graphitization to form compact protective char, leading to synergetic flame retardant properties. The successful fabrication of the fascinating polymer foam materials provides new perspectives for the understanding and design of advanced polymer foam nanocomposite materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据