4.6 Article

Integration of thermo-electrochemical conversion into forced convection cooling

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 46, 页码 25838-25848

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp05028k

关键词

-

资金

  1. TEPCO Memorial Foundation Research Grant [H26(26)]

向作者/读者索取更多资源

Forced convection cooling is important in numerous technologies ranging from microprocessors in data centers to turbines and engines, and active cooling is essential in these situations. However, active transfer of heat or thermal energy under a large temperature difference promptly destroys the exergy, which is the free-energy component of the thermal energy. In this study, to partially recover presently lost exergy in such situations, thermo-electrochemical conversion is integrated into forced convection cooling. We design and fabricate a test cell in which an electrolyte liquid is forced through a channel formed between two parallel electrodes and the hot-side electrode simulates an object to be cooled. Our experimental investigations show that the narrower interelectrode channels afford higher cooling and power generation performances. The mass transfer resistance is the most dominant type of resistance for all the conditions tested and the charge transfer kinetics is found to be controlled by the electrolyte viscosity. The dependence of the generated power on the flow rate is caused by the change in the diffusion coefficient of redox species with temperature. As an evaluation measure for such forced-flow thermo-electrochemical cells, the gain (Lambda)-defined as the ratio of the generated power to the hydrodynamic pumping work required to force the liquid through the cell-is introduced. Lambda is above unity in a certain flow rate region. This demonstrates that such a system can generate more electric power than the hydrodynamic pump work required to drive the liquid through the cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据