4.5 Article

Mesoscale design of heterogeneous material systems in multi-material additive manufacturing

期刊

JOURNAL OF MATERIALS RESEARCH
卷 33, 期 1, 页码 58-67

出版社

SPRINGER HEIDELBERG
DOI: 10.1557/jmr.2017.328

关键词

-

向作者/读者索取更多资源

Mesoscale heterogeneous material systems are efficient and adaptive to real world environments, owing to the non-uniform stress fields that result from the convolution of component geometries, loading conditions, and environmental changes. With the advent of multi-material additive manufacturing, the production of heterogeneous material systems with a pre-defined mesoscale material distribution becomes feasible. This unlocks the design freedom at a characteristic length scale between the macroscale geometry and microstructures, but also calls for a new design framework to optimize the mesoscale material distribution in multi-material additive manufacturing. Here, we propose and demonstrate such a design framework by incorporating digital image correlation-based deformation mapping with 3D finite element modeling-based computational optimization. The constitutive behavior of each constituent material or their mixtures is calibrated by matching the local deformation data. The optimal mesoscale material distribution can then be determined using global optimization algorithms and validated experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据