4.5 Article

Chip Morphology and Chip Formation Mechanisms During Machining of ECAE-Processed Titanium

出版社

ASME
DOI: 10.1115/1.4038442

关键词

equal channel angular extrusion; titanium; machining; chip formation; chip morphology

资金

  1. Directorate for Engineering [1404926]
  2. U.S. National Science Foundation [NSF CMMI-1404926]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [1404926] Funding Source: National Science Foundation

向作者/读者索取更多资源

Severe plastic deformation (SPD) processing such as equal channel angular extrusion (ECAE) has been pioneered to produce ultrafine grained (UFG) metals for improved mechanical and physical properties. However, understanding the machining of SPD-processed metals is still limited. This study aims to investigate the differences in chip morphology when machining ECAE-processed UFG and coarse-grained (CG) titanium (Ti) and understand the chip formation mechanism using metallographic analysis, digital imaging correlation (DIC), and nano-indentation. The chip morphology is classified as aperiodic saw-tooth, continuous, or periodic saw-tooth, and changes with the cutting speed. The chip formation mechanism of the ECAE-processed Ti transitions from cyclic shear localization within the low cutting speed regime (such as 0.1 m/s or higher) to uniform shear localization within the moderately high cutting speed regime (such as from 0.5 to 1.0 m/s) and to cyclic shear localization (1.0 m/s). The shear band spacing increases with the cutting speed and is always lower than that of the CG counterpart. If the shear strain rate distribution contains a shift in the chip flow direction, the chip morphology appears saw-tooth, and cyclic shear localization is the chip formation mechanism. If no such shift occurs, the chip formation is considered continuous, and uniform shear localization is the chip formation mechanism. Hardness measurements show that cyclic shear localization is the chip formation mechanism when localized hardness peaks occur, whereas uniform shear localization is operative when the hardness is relatively constant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据