4.5 Article

Incipient Bearing Fault Feature Extraction Based on Minimum Entropy Deconvolution and K-Singular Value Decomposition

出版社

ASME
DOI: 10.1115/1.4037419

关键词

machinery condition monitoring; sparse representation; dictionary learning; K-SVD; minimum entropy deconvolution; rolling element bearing

资金

  1. National Natural Science Foundation of China [51475286, 51575339]

向作者/读者索取更多资源

Machinery condition monitoring and fault diagnosis are essential for early detection of equipment malfunctions or failures, which insure productivity, quality, and safety in the manufacturing process. This paper aims at extracting fault features of rolling element bearings at the incipient fault stage. K-singular value decomposition (K-SVD), one technique for sparse representation of signals, is used for study. In K-SVD, its dictionary is trained from data by machine learning techniques, which allows more flexibility to adapt to variation of real signals than the predefined dictionaries. Analysis on simulated bearing signals and real signals shows that K-SVD can give better bearing fault features than the predefined dictionaries such as wavelet dictionaries. However, during our simulation study, K-SVD was found to have large representation error under heavy noise. To reduce the noise effect, minimum entropy deconvolution (MED) is used as a prefilter. The combination of MED and K-SVD is proposed for incipient bearing fault detection. The method is verified by simulation and experimental study. It is shown that the proposed method can effectively extract the impulsive fault feature of the tested bearing at its incipient fault stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据