4.5 Article

A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2017.01.016

关键词

Vertical cylindrical annulus; Molten gallium; Magnetic field; Electric potential; Material process

资金

  1. Islamic Azad University, Iran
  2. Research Chair Grant National Science and Technology Development Agency (NSTDA)
  3. Thailand Research Fund (TRF)
  4. National Research University Project (NRU)
  5. King Mongkut's University of Technology Thonburi through the KMUTT 55th Anniversary Commemorative Fund

向作者/读者索取更多资源

Presets work aims to investigate the natural convection inside a cylindrical annulus mold containing molten gallium under a horizontal magnetic field in three-dimensional coordinates. The modeling system is a vertical cylindrical annulus which is made by two co-axial cylinders of internal and external radii. The internal and external walls are maintained isothermal but in different temperatures. The upper and lower sides of annulus are also considered adiabatic while it is filled by an electrical conducting fluid. Three dimensional cylindrical coordinates as (r, theta, z) are used to respond the velocity components as (u, v, w). The governing equations are steady, laminar and Newtonian using the Boussinesq approximation. Equations are nonlinear and they must be corresponded by applying the finite volume approach; so that the hybrid-scheme is applied to discretize equations. The results imply that magnetic field existence leads to generate the Lorentz force in opposite direction of the buoyancy forces. Moreover the Lorentz force and its corresponded electric field are more significant in both Hartmann layer and Roberts layer, respectively. The strong magnetic field is required to achieve better quality products in the casting process of a liquid metal with a higher Prandtl number.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据