4.5 Article

Helimagnetic order in bulk MnSi and CoSi/MnSi superlattices

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2016.07.010

关键词

Spin spiral; Skyrmion; Manganese silicide; Cobalt silicide; Superlattice

资金

  1. Science and Engineering Research Council (SERC) [1527500027]

向作者/读者索取更多资源

Skyrmions are nanoscopic whirls of spins that reside in chiral magnets. It is only fairly recent that a plethora of applications for these quasiparticles emerges, especially in data storage. On the other hand, spin spirals are the periodic analogs of skyrmions, and are equally imperative in the course of exploration to enhance our understanding of helimagnetism. In this study, a new infrastructure based on the B20 compound, MnSi is propounded as a hosting material for spin spirals; alternating thin layers of CoSi and MnSi in the superlattice form provides a facile way of varying the properties of the spin spirals across a continuum. Using first-principles calculations based on full-potential linearized augmented plane-wave (FLAPW)-based density functional theory (DFT), the spin order of bulk MnSi, MnSi film, and the CoSi/MnSi superlattice is investigated. Spin dispersion plots as a function of propagation vectors show that the spiral size changes in the presence of CoSi - we find that the size of the spiral is reduced in the superlattice with thin CoSi layers (CoSi:MnSi = 1:1 thickness ratio), whilst at a larger CoSi:MnSi = 2:1 thickness ratio, the material behaves as a ferromagnet. In a similar fashion, the spin moment and orbital occupancy depend significantly on the thickness of the CoSi layers. However, the exchange interaction between Mn atoms appears to be generally impervious to the presence of CoSi. Succinctly, the CoSi/MnSi superlattice could be an excellent functional material in data storage applications. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据