4.6 Article

Polyoxovanadate inhibition of Escherichia coli growth shows a reverse correlation with Ca2+-ATPase inhibition

期刊

NEW JOURNAL OF CHEMISTRY
卷 43, 期 45, 页码 17577-17587

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nj01208g

关键词

-

资金

  1. FCT, Foundation for Science and Technology [UID/Multi/04326/2013]
  2. Council of Scientific & Industrial Research (CSIR) [01(2906)/17/EMR-II]

向作者/读者索取更多资源

Recently, a global analysis of the structure-activity-relationship of a series of polyoxometalates (POMs) revealed that the most active POMs were ascribed to be polyoxovanadates (POVs), especially decavanadate (V-10), which was very active against certain bacteria (Bijelic et al., Chem. Commun., 2018). The present study explores this observation and compares the effects of three POVs namely MnV11, MnV13 and V-10 against Escherichia coli growth. It was observed that MnV11 presents the lowest growth inhibition (GI(50)) value for Escherichia coli followed by the MnV13 compound, being about 2 times lower than that of V-10; respectively, the values obtained were 0.21, 0.27 and 0.58 mM. All three compounds were more effective than vanadate alone (GI(50) = 1.1 mM) and also than decaniobate, Nb-10 (GI(50) > 10 mM), an isostructural POM of V-10. However, the POVs exhibiting the highest antibacterial activity (MnV11) were shown to have the lowest Ca2+-ATPase inhibitor capacity (IC50 = 58 mM) whereas decavanadate, which was also very active against this membranar ATPase (IC50 = 15 mM), was less active against bacterial growth, suggesting that POV inhibition of ion pumps might not be associated with the inhibition of Escherichia coli growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据