4.5 Article

The efficacy of magnetic field on the thermal behavior of MnFe2O4 nanofluid as a functional fluid through an open-cell metal foam tube

期刊

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
卷 432, 期 -, 页码 539-547

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2017.02.045

关键词

MnFe2O4 nanofluid; Magnetic field; Metal foam tube; Forced convection

向作者/读者索取更多资源

In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe2O4 magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe2O4 nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000. (C) 2017 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据