4.1 Article

Overcoming synthetic challenges in targeting coenzyme A biosynthesis with the antimicrobial natural product CJ-15,801

期刊

MEDCHEMCOMM
卷 10, 期 12, 页码 2118-2125

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9md00312f

关键词

-

资金

  1. CPRR from the National Research Foundation (NRF) of South Africa [78988]
  2. National Institutes of Health (NIH) [R01AI136836]
  3. NRF
  4. Oppenheimer Memorial Trust
  5. NRF Scare Skills doctoral bursaries
  6. NRF Innovation doctoral bursary
  7. Australian Government

向作者/读者索取更多资源

The biosynthesis of the essential metabolic cofactor coenzyme A (CoA) has been receiving increasing attention as a new target that shows potential to counter the rising resistance to established antimicrobials. In particular, phosphopantothenoylcysteine synthetase (PPCS)-the second CoA biosynthesis enzyme that is found as part of the bifunctional CoaBC protein in bacteria, but is monofunctional in eukaryotes-has been validated as a target through extensive genetic knockdown studies in Mycobacterium tuberculosis. Moreover, it has been identified as the molecular target of the fungal natural product CJ-15,801 that shows selective activity against Staphylococcus aureus and the malaria parasite Plasmodium falciparum. As such, CJ-15,801 and 4 '-phospho-CJ-15,801 (its metabolically active form) are excellent tool compounds for use in the development of new antimicrobial PPCS inhibitors. Unfortunately, further study and analysis of CJ-15,801 is currently being hampered by several unique challenges posed by its synthesis. In this study we describe how these challenges were overcome by using a robust palladium-catalyzed coupling to form the key N-acyl vinylogous carbamate moiety with retention of stereochemistry, and by extensive investigation of protecting groups suited to the labile functional group combinations contained in this molecule. We also demonstrate that using TBAF for deprotection causes undesired off-target effects related to the presence of residual tertiary ammonium salts. Finally, we provide a new method for the chemoenzymatic preparation of 4 '-phospho-CJ-15,801 on multi-milligram scale, after showing that chemical synthesis of the molecule is not practical. Taken together, the results of this study advances our pursuit to discover new antimicrobials that specifically target CoA biosynthesis and/or utilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据