4.6 Article

Self-healing silk from the sea: role of helical hierarchical structure in Pinna nobilis byssus mechanics

期刊

SOFT MATTER
卷 15, 期 47, 页码 9654-9664

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9sm01830a

关键词

-

资金

  1. Max Planck Society
  2. Deutsche Forschungsgemeinschaft (DFG) [HA6369/4-1]
  3. Observatoire des Sciences de l'Univers Terre-Homme-Environnement-Temps-Astronomie (OSU-theta, 2017)
  4. European Marine Biological Resources Center (EMBRC, AAP2017)
  5. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2018-05243]

向作者/读者索取更多资源

The byssus fibers of Mytilus mussel species have become an important role model in bioinspired materials research due to their impressive properties (e.g. high toughness, self-healing); however, Mytilids represent only a small subset of all byssus-producing bivalves. Recent studies have revealed that byssus from other species possess completely different protein composition and hierarchical structure. In this regard, Pinna nobilis byssus is especially interesting due to its very different morphology, function and its historical use for weaving lightweight golden fabrics, known as sea silk. P. nobilis byssus was recently discovered to be comprised of globular proteins organized into a helical protein superstructure. In this work, we investigate the relationships between this hierarchical structure and the mechanical properties of P. nobilis byssus threads, including energy dissipation and self-healing capacity. To achieve this, we performed in-depth mechanical characterization, as well as tensile testing coupled with in situ X-ray scattering. Our findings reveal that P. nobilis byssus, like Mytilus, possesses self-healing and energy damping behavior and that the initial elastic behavior of P. nobilis byssus is due to stretching and unraveling of the previously observed helical building blocks comprising the byssus. These findings have biological relevance for understanding the convergent evolution of mussel byssus for different species, and also for the field of bio-inspired materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据