4.7 Article

Highly confined mixtures of parallel hard squares: A density-functional-theory study

期刊

PHYSICAL REVIEW E
卷 100, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.100.062604

关键词

-

资金

  1. Ministerio de Economia, Industria y Competitividad (Spain) [FIS2015-66523-P, PGC2018-096606-B-100, FIS2017-86007-C3-1-P]

向作者/读者索取更多资源

Using the fundamental-measure density-functional theory, we study theoretically the phase behavior of extremely confined mixtures of parallel hard squares in slit geometry. The pore width is chosen such that configurations consisting of two consecutive big squares, or three small squares, in the transverse direction, perpendicular to the walls, are forbidden. We analyze two different mixtures with edge lengths of species selected so as to allow or forbid one big plus one small square to fit into the channel. For the first mixture we obtain first-order transitions between symmetric and asymmetric packings of particles: Small and big squares are preferentially adsorbed at different walls. Asymmetric configurations are shown to lead to more efficient packing at finite pressures. We argue that the stability region of the asymmetric phase in the pressure-composition plane is bounded so that the symmetric phase is stable at low and very high pressure. For the second mixture, we observe strong demixing between phases which are rich in different species. Demixing occurs in the lateral direction, i.e., the dividing interface is perpendicular to the walls, and phases exhibit symmetric density profiles. The possible experimental realization of this behavior (which in practical terms is precluded by jamming) in strictly two-dimensional systems is discussed. Finally, the phase behavior of a mixture with periodic boundary conditions is analyzed and the differences and similarities between the latter and the confined system are discussed. We claim that, although exact calculations exclude the existence of true phase transitions in (1 + epsilon)-dimensional systems, density-functional theory is still successful in describing packing properties of large clusters of particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据