4.5 Article

Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure

期刊

CHEMOSENSORS
卷 7, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/chemosensors7040065

关键词

caffeic acid; gold nanoparticles; electrochemical sensor; sinusoidal voltage

资金

  1. Erasmus+ fellowship from the University of Modena and Reggio Emilia

向作者/读者索取更多资源

The increasing demand for sensitive electrochemical sensors in various medical and industrial applications promotes the fabrication of novel sensing materials with improved electrocatalytic and analytical performances. This work deals with the development of a composite material based on gold nanoparticles (AuNPs) embedded in poly(3,4-ethylenedioxythiophene) (PEDOT) layer for electrochemical determination of caffeic acid (CA). CA is a phenolic compound with excellent antioxidant properties that is present in vegetables, fruits, and alcoholic and non-alcoholic beverages. Its analytical quantification is of great interest in food production monitoring and healthcare applications. Therefore, the development of sensitive analytical devices for CA monitoring is required. The AuNPs have been prepared in situ onto PEDOT coated glassy carbon electrode (GC) by means of an innovative procedure consisting on the use of a sinusoidal voltage (SV) superimposed on a constant potential. The physico-chemical properties of the PEDOT-AuNPs composite material were investigated by a range of techniques including cyclic voltammetry, electrochemical quartz crystal microbalance, and scanning electron microscopy. The glassy carbon electrode/poly(3,4-ethylenedioxythiophene)-gold nanoparticles-sinusoidal voltage (GC/PEDOT-AuNPs-SV) sensor exhibited good analytical performance toward the CA quantification with a linear response over a wide concentration range from 10 mu M to 1 mM. In addition, the proposed GC/PEDOT-AuNPs-SV sensor was successfully applied in the determination of total polyphenols content expressed as equivalents of CA in juice samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据