3.9 Article

Nonisentropic Phenomenological Model of a Reciprocating Compressor

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S2010132519500391

关键词

Model; uncertainties; compressor; R134a; phenomenological

向作者/读者索取更多资源

This paper presents the development of a numerical, iterative and nonisentropic model for the thermodynamic processes of a reciprocating compressor of a refrigeration system operating at steady state. The mathematical model was implemented using the scientific software Engineering Equation Solver (EES) and it is based on the application of the energy equations in four regions of the compressor: inlet duct and chambers of pre-compression, compression, and post-compression. The model was validated with experimental data collected from an open-drive reciprocating compressor, operating with the refrigerant R-134a at different suction and discharge pressures and with different compressor rotational speeds. Model validation was made comparing the values of the mass flow rate and the discharge temperature of the compressor generated by the model with their corresponding experimental values for 33 experimental tests, the mean relative difference was -0.2% for the discharge temperature and 2.9% for mass flow rate. In this validation, the output variables of the model were calculated considering the uncertainties from the input variables. The theoretical mean standard uncertainty is 2% for discharge temperature and 6% for mass flow rate. An analysis of the capacitive and thermal performance of the compressor was made using the model, which demonstrates a decrease in the capacitive and thermal efficiencies for increasing the pressure ratio or clearance volume.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据