4.4 Article

Biocompatible, Injectable Anionic Hydrogels Based on Poly(Oligo Ethylene Glycol Monoacrylate-co-Acrylic Acid) for Protein Delivery

期刊

ADVANCED THERAPEUTICS
卷 2, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/adtp.201900092

关键词

biocompatibility; controlled release; injectable hydrogel; protein delivery; wound healing

资金

  1. Chancellor's Discovery, Creativity, Innovation, and Collaboration Fund at the University of Arkansas
  2. Arkansas Bioscience Institute

向作者/读者索取更多资源

Development of biocompatible hydrogels for sustained delivery of biological therapeutic agents is important for many regenerative medicine applications. In this study, a facile method is developed to synthesize injectable, anionic hydrogels based on poly(oligo ethylene glycol monoacrylate-co-acrylic acid) for protein controlled release. The synthesis of the copolymers is robust involving a single step of an aqueous free radical polymerization. These copolymers are then allowed to swell into the microporous injectable hydrogels. The covalent incorporation of the anionic group, acrylic acid, into the hydrogels increases the thermal stability and the viscosity of hydrogels due to the stronger intermolecular interactions in the copolymer network. These anionic groups also significantly enhance electrostatic interactions between the hydrogels and positively charged proteins, thus, rendering the hydrogels suitable for sustained release of the proteins under physiological conditions. An animal study shows these injectable hydrogels do not adversely affect wound healing. These findings warrant further investigation of these injectable hydrogels for their use in protein delivery for wound healing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据