4.4 Article

Learning to Perform a Perched Landing on the Ground Using Deep Reinforcement Learning

期刊

JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
卷 92, 期 3-4, 页码 685-704

出版社

SPRINGER
DOI: 10.1007/s10846-017-0696-1

关键词

Deep Q-network; UAV; Perched landing

资金

  1. Autonomous System Underpinning Research programme from DSTL

向作者/读者索取更多资源

A UAV with a variable sweep wing has the potential to perform a perched landing on the ground by achieving high pitch rates to take advantage of dynamic stall. This study focuses on the generation and evaluation of a trajectory to perform a perched landing on the ground using a non-linear constraint optimiser (Interior Point OPTimizer) and a Deep Q-Network (DQN). The trajectory is generated using a numerical model that characterises the dynamics of a UAV with a variable sweep wing which was developed through wind tunnel testing. The trajectories generated by a DQN have been compared with those produced by non-linear constraint optimisation in simulation and flown on the UAV to evaluate performance. The results show that a DQN generates trajectories with a lower cost function and have the potential to generate trajectories from a range of starting conditions (on average generating a trajectory takes 174 milliseconds). The trajectories generated performed a rapid pitch up before the landing site is reached, to reduce the airspeed (on average less than 0.5m/s just above the landing site) without generating an increase in altitude, and then the nose dropped just before hitting the ground to allow the aircraft to be recovered without damaging the tail. The trajectories generated by a DQN produced a final airspeed (when it hit the ground) of 3.25m/s (with a standard deviation of 0.97m/s) in the downward direction, which would allow the aircraft to be safely recovered and significantly less than a traditional landing (approximate to 10m/s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据