4.7 Article

Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane

期刊

DALTON TRANSACTIONS
卷 48, 期 47, 页码 17499-17506

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9dt03838h

关键词

-

资金

  1. National Natural Science Foundation of China [21771033, 21671036]
  2. Fundamental Research Funds for the Central Universities [2412018BJ001, 2412018ZD007, 2412018QD005]
  3. China Postdoctoral Science Foundation [2018M631849]
  4. Foundation of Jilin Educational Committee [JJKH20190268KJ]
  5. Scientific Development Project of Jilin Province [20190201206JC]

向作者/读者索取更多资源

Aromatic amino compounds are important and universally used chemical intermediates in a wide range of industrial fields. Thus, their production with high efficiency and selectivity under ambient conditions is expected and demanded in modern industry. Herein, a series of superfine CoNi alloy nanoparticles embedded in Al2O3 nanosheet (CoxNi1-x/Al2O3, where x represents the content of Co in the precursor) catalysts was fabricated from CoNiAl-LDH and used to catalyze the tandem dehydrogenation of ammonia borane (AB) and hydrogenation of nitroaromatics to the corresponding amines. Systematic experiments indicate that the composition, size, morphology and catalytic performance of the CoxNi1-x/Al2O3 catalysts can be easily controlled by changing the content of Ni in the CoNiAl-LDH precursor. Particularly, Co0.67Ni0.33/Al2O3 exhibited the best tandem catalytic performance among the six samples. This as-prepared catalyst not only showed a moderate turn-over-frequency value (TOF: 34.5 mol(H2) mol(Co0.67)Ni(0.33)(-1) min(-1) at 298 K without base or additives) and relatively low activation energy (32.4 kJ mol(-1)) for the dehydrogenation of AB, but also superior catalytic activity (conversion yield reaching up to 100%) and selectivity (>99%) for the tandem reductive transformation of in excess of sixteen types of nitroaromatics to aromatic amines. Density functional theory (DFT) calculations suggest that the construction of the CoNi alloy optimized the electronic structure with respect to the pure component, promoting its activity for AB hydrolysis and nitroaromatics hydrogenation. Finally, the catalyst could be easily recycled using a magnet due to the magnetic properties of the Co0.67Ni0.33 alloy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据