4.4 Article

Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals

期刊

COMPREHENSIVE PHYSIOLOGY
卷 9, 期 2, 页码 715-766

出版社

WILEY
DOI: 10.1002/cphy.c180012

关键词

-

资金

  1. NIH [AG044615, AG057052, HL96750, HL146114]
  2. Mayo Clinic

向作者/读者索取更多资源

Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (P-ab) and intrathoracic (P-th) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. (C) 2019 American Physiological Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据