4.5 Article

Brain structural and microstructural alterations associated with cerebral palsy and motor impairments in adolescents born extremely preterm and/or extremely low birthweight

期刊

DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY
卷 57, 期 12, 页码 1168-1175

出版社

WILEY
DOI: 10.1111/dmcn.12854

关键词

-

向作者/读者索取更多资源

AIM To elucidate neurobiological changes underlying motor impairments in adolescents born extremely preterm (gestation < 28wks) and/or with extremely low birthweight (ELBW, < 1000g), our aims were the following: (1) to compare corticospinal tract (CST) microstructure and primary motor cortex (M1) volume, area, and thickness between extremely preterm/ELBW adolescents and a comparison group with normal birthweight (> 2499g); (2) to compare CST microstructure and M1 volume, area, and thickness between extremely preterm/ELBW adolescents with cerebral palsy (CP), motor impairment without CP, and no motor impairment; and (3) to investigate associations between CST microstructure and M1 measures. METHOD This study used diffusion and structural magnetic resonance imaging to examine the CST and M1 in a geographical cohort of 191 extremely preterm/ELBW adolescents (mean age 18y 2.4mo [SD 9.6mo]; 87 males, 104 females) and 141 adolescents in the comparison group (mean age 18y 1.2mo [SD 9.6mo]; 59 males, 82 females). RESULTS Extremely preterm/ELBW adolescents had higher CST axial, radial, and mean diffusivities and lower M1 thickness than the comparison group. Extremely preterm/ELBW adolescents with CP had higher CST diffusivities than non-motor-impaired extremely preterm/ELBW adolescents. CST diffusivities correlated with M1 volume and area. INTERPRETATION Extremely preterm/ELBW adolescents have altered CST microstructure, which is associated with CP. Furthermore, the results elucidate how CST and M1 alterations interrelate to potentially influence motor function in extremely preterm/ELBW adolescents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据