4.5 Article

A Global Dynamic Long-Term Inundation Extent Dataset at High Spatial Resolution Derived through Downscaling of Satellite Observations

期刊

JOURNAL OF HYDROMETEOROLOGY
卷 18, 期 5, 页码 1305-1325

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-16-0155.1

关键词

-

资金

  1. NASA [NNH13CH27C]
  2. French spatial agency [Centre National d'Etudes Spatiales (CNES)]

向作者/读者索取更多资源

A new procedure is introduced to downscale low-spatial-resolution inundation extents from Global Inundation Extent from Multi-Satellites (GIEMS) to a 3-arc-s (90 m) dataset (known as GIEMS-D3). The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is introduced and an innovative smoothing procedure is developed to ensure a smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is pertinent for natural hydrology environments controlled by elevation but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion of other, more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high-spatial-resolution inundation database available globally at a monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS), and active microwave (synthetic aperture radar).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据