4.7 Article

Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration - Comparison with high-resolution light transmission visualization in laboratory sandbox

期刊

JOURNAL OF HYDROLOGY
卷 544, 期 -, 页码 254-266

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2016.11.036

关键词

Chlorinated hydrocarbons; Groundwater monitoring; Electrical resistivity tomography; Light transmission visualization; Heterogeneity

资金

  1. National Nature Science Foundation of China [U1503282, 41030746, 41172206, 41672229]

向作者/读者索取更多资源

Real-time monitoring of dense non-aqueous phase liquids (DNAPLs) migration and distribution is essential for the decision of an effective remediation strategy. Light transmission visualization (LTV) has shown its accuracy and efficiency for measuring DNAPLs saturation and water content in the laboratory, but it cannot be implemented in three dimensional sandbox or field-scale sites. Recently developed electrical resistivity tomography (ERT) has been applied in monitoring the migration and distribution of DNAPLs in bench- and field-scale studies. However, the evaluation of the ability of ERT for monitoring DNAPLs migration by a direct comparison of ERT with high-resolution techniques such as LTV within an experimental system is still lacking. Two sandbox experiments with different permeability conditions are conducted to quantitatively assess the capability of ERT for monitoring the DNAPLs migration. During the injections, LTV method is used to visualize the DNAPLs migration and provide high-resolution saturation data while ERT method is applied to capture the change of resistivity. The results from the comparison between LTV and ERT methods show that ERT is successful in detecting the accumulation and flow bypassing phenomenon around the low-permeability lenses, as well as the penetration through the high permeability lenses. There is a fair correlation between the resistivity and saturation with overall correlation coefficients above 0.6, except at last stage. However, using classical regularization techniques (based on smoothness), the area of DNAPLs plume determined by ERT is commonly overestimated. Compared to the plume around the low-permeability lenses, the plume around the high-permeability lenses estimated by ERT is more extensive due to larger resistivity contrasts. In addition, ERT measurements indicate that the resistivity increase caused by the low-saturation DNAPLs is not apparent enough, which is likely to be covered up under the changing hydrogeochemical environments in field investigations. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据