4.8 Article

A core-shell structure QRu-PLGA-RES-DS NP nanocomposite with photothermal response-induced M2 macrophage polarization for rheumatoid arthritis therapy

期刊

NANOSCALE
卷 11, 期 39, 页码 18209-18223

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr05922a

关键词

-

资金

  1. National Natural Science Foundation of China [21701034, 21877051, 81803027]
  2. Natural Science Foundation of Guangdong Province [2018A030310628]
  3. Planned Item of Science and Technology of Guangdong Province [2016A020217011]

向作者/读者索取更多资源

Rheumatoid arthritis (RA) is a degenerative joint disease caused by autoimmunity; for the effective treatment of RA while avoiding the side effects of conventional drugs, we have proposed a new therapeutic strategy to eliminate the inflammatory response in RA by regulating the immune system that promotes the transformation of M1-type macrophages to M2-type macrophages. Herein, we designed and synthesized a core-shell nanocomposite (QRu-PLGA-RES-DS NPs), which showed an effective therapeutic effect on RA by accurately inducing the polarization of M2 macrophages. In this system, the quadrilateral ruthenium nanoparticles (QRuNPs) with a photothermal effect were utilized as a core and the thermosensitive molecular poly (lactic-co-glycolic acid) (PLGA) modified with the targeted molecule dextran sulfate (DS) was employed as a shell. Then, the nanocarrier QRu-PLGA-DS NPs effectively improved the water solubility and targeting of resveratrol (RES) through self-assembly. Therefore, the QRu-PLGA-RES-DS NPs significantly enhanced the ability of RES to reverse the M1 type macrophages to the M2 type macrophages through an accurate release. In vivo experiments further demonstrated that the QRu-PLGA-RES-DS NPs could effectively accumulate in the lesion area with an exogenous stimulus, and this significantly enhanced the transformation of the M2 type macrophages and decreased the recruitment of the M1 type macrophages. Furthermore, the QRu-PLGA-RES-DS NPs effectively treated RA by eliminating the inflammatory response; in addition, photoacoustic imaging (PA) of the QRu NPs provided image guidance for the distribution and analysis of nanomedicine in inflammatory tissues. Hence, this therapeutic strategy promotes the biological applications of Ru-based nanoparticles in disease treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据