4.5 Article

Design of an adaptive neuro-fuzzy computing technique for predicting flow variables in a 90° sharp bend

期刊

JOURNAL OF HYDROINFORMATICS
卷 19, 期 4, 页码 572-585

出版社

IWA PUBLISHING
DOI: 10.2166/hydro.2017.200

关键词

90 degrees sharp bend; ANFIS model; back propagation; discharge; flow depth; velocity

向作者/读者索取更多资源

Investigating flow patterns in sharp bends is more essential than in mild bends due to the complex behaviour exhibited by sharp bends. Flow variable prediction in bends is among several concerns of hydraulics scientists. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is applied to predict axial velocity and flow depth in a 90 degrees sharp bend. The experimental velocity and flow depth data for five discharge rates of 5, 7.8, 13.6, 19.1 and 25.3 L/s are used for training and testing the models. In ANFIS training, the two algorithms employed are back propagation (BP) and a hybrid of BP and least squares. In model design, the grid partitioning (GP) and sub-clustering methods are used for fuzzy inference system generation. The results indicate that ANFIS-GP-Hybrid predicts velocity best followed by flow depth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据