4.7 Article

Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo

期刊

DEVELOPMENTAL CELL
卷 34, 期 4, 页码 435-447

出版社

CELL PRESS
DOI: 10.1016/j.devcel.2015.07.004

关键词

-

资金

  1. Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE)
  2. Australian Research Council [DP120104594, DE120100794]
  3. National Health and Medical Research Council [APP1022721, APP1052171, APP1062263]
  4. Viertel Foundation Medical Research Fellowship
  5. Monash University
  6. UK Medical Research Council [G0802057]
  7. Wenner-Gren Foundations
  8. Swedish Society for Medical Research
  9. A*STAR [1430700132]
  10. MRC [G0802057] Funding Source: UKRI
  11. Medical Research Council [G0802057] Funding Source: researchfish
  12. Australian Research Council [DE120100794] Funding Source: Australian Research Council

向作者/读者索取更多资源

Every cell in our body originates from the pluripotent inner mass of the embryo, yet it is unknown how biomechanical forces allocate inner cells in vivo. Here we discover subcellular heterogeneities in tensile forces, generated by actomyosin cortical networks, which drive apical constriction to position the first inner cells of living mouse embryos. Myosin II accumulates specifically around constricting cells, and its disruption dysregulates constriction and cell fate. Laser ablations of actomyosin networks reveal that constricting cells have higher cortical tension, generate tension anisotropies and morphological changes in adjacent regions of neighboring cells, and require their neighbors to coordinate their own changes in shape. Thus, tensile forces determine the first spatial segregation of cells during mammalian development. We propose that, unlike more cohesive tissues, the early embryo dissipates tensile forces required by constricting cells via their neighbors, thereby allowing confined cell repositioning without jeopardizing global architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据