4.3 Article

Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly

期刊

JOURNAL OF HEREDITY
卷 108, 期 6, 页码 693-700

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jhered/esx058

关键词

chromosome conformation capture; de novo genome assembly; Gasterosteus aculeatus

资金

  1. Evolutionary, Ecological, or Conservation Genomics Research Award from the American Genetic Association
  2. Office of the Vice President of Research at the University of Georgia
  3. National Institutes of Health [R01 GM116853]
  4. Fred Hutchinson Cancer Research Center Division of Basic Sciences

向作者/读者索取更多资源

Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the ability of a Hi-C based proximity-guided assembly (PGA) to perform a de novo genome assembly from relatively short contigs. Using Hi-C based PGA, we generated complete chromosome assemblies from a distribution of short contigs (20-100 kb). We found that 96.40% of contigs were correctly assigned to linkage groups (LGs), with ordering nearly identical to the previous genome assembly. Using available bacterial artificial chromosome (BAC) end sequences, we provide evidence that some of the few discrepancies between the Hi-C assembly and the existing assembly are due to structural variation between the populations used for the 2 assemblies or errors in the existing assembly. This Hi-C assembly also allowed us to improve the existing assembly, assigning over 60% (13.35 Mb) of the previously unassigned (similar to 21.7 Mb) contigs to LGs. Together, our results highlight the potential of the Hi-C based PGA method to be used in combination with short read data to perform relatively inexpensive de novo genome assemblies. This approach will be particularly useful in organisms in which it is difficult to perform linkage mapping or to obtain high molecular weight DNA required for other scaffolding methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据