4.5 Review

Using Direct Phloem Transport Manipulation to Advance Understanding of Carbon Dynamics in Forest Trees

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/ffgc.2019.00011

关键词

phloem; girdling; compression; chilling; carbon; sink; source; allocation

资金

  1. Natural Environment Research Council-National Science Foundation International Collaboration program [NE/P011462/1, DEB-1741585]
  2. NSF [DEB-1237491]
  3. Swiss National Science Foundation [PSBSP3-168701]
  4. NERC [NE/P011462/1] Funding Source: UKRI

向作者/读者索取更多资源

Carbon dynamics within trees are intrinsically important for physiological functioning, in particular growth and survival, as well as ecological interactions on multiple timescales. Thus, these internal dynamics play a key role in the global carbon cycle by determining the residence time of carbon in forests via allocation to different tissues and pools, such as leaves, wood, storage, and exudates. Despite the importance of tree internal carbon dynamics, our understanding of how carbon is used in trees, once assimilated, has major gaps. The primary tissue that transports carbon from sources to sinks within a tree is the phloem. Therefore, direct phloem transport manipulation techniques have the potential to improve understanding of numerous aspects of internal carbon dynamics. These include relationships between carbon assimilation, nonstructural carbon availability, respiration for growth and tissue maintenance, allocation to, and remobilization from, storage reserves, and long-term sequestration in lignified structural tissues. This review aims to: (1) introduce the topic of direct phloem transport manipulations, (2) describe the three most common methods of direct phloem transport manipulation and review their mechanisms, namely (i) girdling, (ii) compression and (iii) chilling; (3) summarize the known impacts of these manipulations on carbon dynamics and use in forest trees; (4) discuss potential collateral effects and compare the methods; and finally (5) highlight outstanding key questions that relate to tree carbon dynamics and use, and propose ways to address them using direct phloem transport manipulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据