3.8 Proceedings Paper

Cloud-DNN: An Open Framework for Mapping DNN Models to Cloud FPGAs

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3289602.3293915

关键词

DNN Accelerator; FPGA; High-Level Synthesis; Cloud Computing

资金

  1. National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme
  2. Alibaba Group through Alibaba Innovative Research (AIR) programme
  3. IBM-Illinois Center for Cognitive Computing System Research (C3SR) - a research collaboration as part of IBM AI Horizons Network

向作者/读者索取更多资源

The efficacy and effectiveness of Convolutional Neural Networks (CNNs) have been proven in a wide range of machine learning applications. However, the high computational complexity of CNNs presents a critical challenge towards their broader adoption in real-time and power-efficient scenarios. FPGAs are poised to take a significant role for high-performance and energy-efficient computation of CNNs for both mobile (e.g., UAVs, self-driving cars, and IoT devices) and cloud computing domains. However, implementing an effective CNN system onto FPGAs efficiently remains problematic. The current cloud-based FPGAs with unique design constraints and architectural characteristics further increase the challenges. To address these challenges, we propose a novel open-source automated tool chain called Cloud-DNN. Our tool chain takes trained CNN models specified in Caffe as input, performs a set of transformations, and maps the model to a cloud-based FPGA. Cloud-DNN can significantly improve the overall design productivity of CNNs on FPGAs while satisfying the emergent computational requirements. Our design provides an alternative solution compared to other cloud-based options (e.g., GPUs or TPUs) while offering flexible, and high performance DNN inferences. The unique features of Cloud-DNN include the optimizations with cloud-platform characteristics and the support of easier and streamlined implementation. Experimental results demonstrate up to 104.55x performance improvement when compared to CPU implementation and comparable usability, flexibility, and strong quality compared to other state-of-the-art DNN inference implementations on standalone FPGAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据