4.7 Article

Anaerobic co-metabolic biodegradation of tetrabromobisphenol A using a bioelectrochemical system

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 321, 期 -, 页码 791-800

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2016.09.068

关键词

Tetrabromobisphenol A; Co-metabolic degradation; Bioelectrochemical system

资金

  1. National Natural Science Foundation of China [21106072, 51172107]
  2. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [14KJB430014]

向作者/读者索取更多资源

Tetrabromobisphenol A(TBBPA), a pollutant in industrial wastewaters, needs to be removed due to its high toxicity and persistence. The main biodegradation pathway for TBBPA has been studied, and bisphenol A(BPA), which is toxic to the environment, is recognized as the general terminal product. In this study, we explored a new approach for the anaerobic biodegradation of TBBPA in a bioelectrochemical system (BES) through co-metabolic degradation of TBBPA with glucose. The half-life of TBBPA was significantly reduced to 13.5 h(-1) at 25 mu g/l of TBBPA. With an increase in the concentration of TBBPA, the removal rates of TBBPA rose to more than eighty percent. Based on the analysis of the products, we found that the degradation products of TBBPA were 2,6-dibromo-4-(1-methyl-1-phenylethyl) phenol, (double-benzenes product) and 2,6-dibromo-4-(prop-1-en-2-yl) phenol (single-benzene product), rather than BPA. Simultaneously, we proposed two degradation pathways for TBBPA in a BES system. According to the microbial diversity analysis of the anode biofilm, we speculated that the microorganism responsible for the biodegradation of TBBPA was Azoarcus. Additionally, we briefly analyzed the effect of TBBPA on the performance of BES system to pave the way for the further analysis of the interaction between the TBBPA and the BES system. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据