4.7 Article

Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 337, 期 -, 页码 10-19

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.04.063

关键词

Thermal decomposition behavior; Thermal stability; Powdered ammonium nitrate; Evolved gas analysis

资金

  1. National Natural Science Foundation of China [51174153, 51374164]
  2. National Key Technologies Research and Development Program of China [2016YFC0802801]
  3. Fundamental Research Funds for the Central Universities [WUT: 2017IVA043]

向作者/读者索取更多资源

In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H2O, NH3, N2O, NO, NO2 and HNO3, while in nitrogen, H2O, NH3, NO and HNO3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. (C) 2017 Elsevier B.V. All rights reserved.'

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据