4.7 Article

Assessing the dynamic changes of rhizosphere functionality of Zea mays plants grown in organochlorine contaminated soils

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 331, 期 -, 页码 226-234

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.02.056

关键词

Biogeochemical cycles; Maize; Microbial communities; Organochlorines; Rhizosphere

资金

  1. Rhone-Alpes Region

向作者/读者索取更多资源

The persistent organochlorine pesticides (OCPs) in soils are suspected to disturb soil biogeochemical cycles. This study addressed the dynamic changes in soil functionality under lindane and chlordecone exposures with or without maize plant. Decreases in soil ammonium concentration, potential nitrogen mineralization and microbial biomass were only OCP-influenced in bulk soils. OCPs appeared to inhibit the ammonification step. With plants, soil functionality under OCP stress was similar to controls demonstrating the plant influence to ensure the efficiency of C- and N-turnover in soils. Moreover, OCPs did not impact the microbial community physiological profile in all tested conditions. However, microbial community structure was OCP-modified only in the presence of plants. Abundances of gram-negative and saprophytic fungi increased (up to +93% and +55%, respectively) suggesting a plant stimulation of nutrient turnover and rhizodegradation processes. Nevertheless, intimate microbial/plant interactions appeared to be OCP-impacted with depletions in mycorrhizae and micro/meso-fauna abundances (up to -53% and -56%, respectively) which might have adverse effects on more long-term plant growth (3-4 months). In short-term experiment (28days), maize growth was similar to the control ones, indicating an enhanced plasticity of the soil functioning in the presence of plants, which could efficiently participate to the remediation of OCP-contaminated soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据