4.7 Article

ERTK: extra-wide-lane RTK of triple-frequency GNSS signals

期刊

JOURNAL OF GEODESY
卷 91, 期 9, 页码 1031-1047

出版社

SPRINGER
DOI: 10.1007/s00190-017-1006-1

关键词

Triple-frequency signals; Real-time kinematic (RTK); Extra-wide-lane RTK (ERTK); Ambiguity resolution (AR); Ionosphere-ignored; Ionosphere-float; Ionosphere-smoothed

资金

  1. National Natural Science Funds of China [41622401, 41574023, 41374031]
  2. State Key Laboratory of Geodesy and Earth's Dynamics (Institute of Geodesy and Geophysics, CAS) [SKLGED2016-3-1-EZ]
  3. National Key Research and Development Program of China [2016YFB0501802]

向作者/读者索取更多资源

Triple-frequency signals have thus far been available for all satellites of BeiDou and Galileo systems and for some GPS satellites. The main benefit of triple-frequency signals is their formation of extra-wide-lane (EWL) combinations whose ambiguities can be instantaneously fixed for several 10-100 km baselines. Yet, this benefit has not been fully exploited and only used as a constraint for narrow-lane (NL) ambiguity resolution (AR) in most previous studies. In this study, we comprehensively investigate the real-time kinematic (RTK) capabilities of EWL observations, also referred to as EWL RTK (ERTK). We begin by mathematically expressing the ease of EWL AR and the difficulty of NL AR, respectively, using a numerical demonstration. We then present the mathematical models for ERTK including the ionosphere-ignored, ionosphere-float and ionosphere-smoothed types. The experiments are conducted using a four-station network of real triple-frequency BeiDou data with baseline lengths from 33 to 75 km. The results show that the ionosphere-ignored ERTK achieves real-time solutions with a horizontal accuracy of about 10 cm. Although the ionosphere-float ERTK solutions are very noisy, they can be quickly improved at the centimetre level by further applying the ionosphere-smoothed model. Note that such accurate results are very promising and already satisfy many applications without complicated NL AR. To the best of our knowledge, this is the first comprehensive study to make full use of EWL observations of triple-frequency signals on RTK.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据