4.4 Review

The behavior of ions in water is controlled by their water affinity

期刊

QUARTERLY REVIEWS OF BIOPHYSICS
卷 52, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0033583519000106

关键词

Ions; Law of Matching Water Affinity; proteins; water; water affinity

向作者/读者索取更多资源

The strong, long-range electrostatic forces described by Coulomb's law disappear for ions in water, and the behavior of these ions is instead controlled by their water affinity - a weak, short-range force which arises from their charge density. This was established experimentally in the mid-1980s by size-exclusion chromatography on carefully calibrated Sephadex (R) G-10 (which measures the effective volume and thus the water affinity of an ion) and by neutron diffraction with isotopic substitution (which measures the density and orientation of water molecules near the diffracting ion and thus its water affinity). These conclusions have been confirmed more recently by molecular dynamics simulations, which explicitly model each individual water molecule. This surprising change in force regime occurs because the oppositely charged ions in aqueous salt solutions exist functionally as ion pairs (separated by 0, 1 or 2 water molecules) as has now been shown by dielectric relaxation spectroscopy; this cancels out the strong long-range electrostatic forces and allows the weak, short-range water affinity effects to come to the fore. This microscopic structure of aqueous salt solutions is not captured by models utilizing a macroscopic dielectric constant. Additionally, the Law of Matching Water Affinity, first described in 1997 and 2004, establishes that contact ion pair formation is controlled by water affinity and is a major determinant of the solubility of charged species since only a net neutral species can change phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据