3.8 Proceedings Paper

Fundamentals of neutron waveguides: a proposal for slow neutron beams confinement and applications

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2530567

关键词

neutron optics; waveguides; neutron beams confinement; BNCT

向作者/读者索取更多资源

Neutron optics is the branch of quantum physics devoted to the study of the optical properties of slow neutrons and their behavior as wave-particles. Slow neutrons beams (with typical energy the order of 0.025 eV, known as thermal neutrons, and also smaller) can propagate confined in guides of various transverse dimensions, longitude and geometries, under total internal reflection conditions, like in the case of classical optical waveguides. We study the properties and possible applications of neutron waveguides with small transverse dimensions. In particular, we have implemented a new algorithm to simulate neutron beams as they are confined in particular waveguides. The results, obtained from a new analytical formalism, are compared with standard numerical methods as the FDTD and, then, enhance the feasibility for recreating the beam structure as the later propagates inside the waveguide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据