4.0 Article

A Three-Dimensional Finite Element Analysis of Displaced Intra-Articular Calcaneal Fractures

期刊

JOURNAL OF FOOT & ANKLE SURGERY
卷 56, 期 2, 页码 319-326

出版社

ELSEVIER SCIENCE INC
DOI: 10.1053/j.jfas.2016.09.018

关键词

biomechanical; calcaneal height/width; contact mechanics; kinematics; range of motion; subtalar joint

资金

  1. Research Fund for National Natural Science Foundation of China [81301543]

向作者/读者索取更多资源

A better understanding of displaced intra-articular calcaneal fractures, their effect on joint mechanics, and the relationship between altered mechanics and osteoarthritis could aid in the development or refinement of treatment methods. Finite element modeling is accepted as the reference standard for evaluating joint contact stresses. The objective of the present study was to analyze the in vivo joint mechanical data from finite element modeling for normal and injured subtalar joints. A 3-dimensional model of the ankle-hindfoot was developed and validated. Both height loss and width increases in the calcaneus were simulated. Next, they were used to investigate the relationship between calcaneal height or width and the contact mechanics of the posterior facet of the subtalar joint. The contact area/joint area ratio increased in the subtalar joint with injury when the calcaneal width increased. Moreover, the peak contact pressure and the proportion of the area under high contact pressure (>6 MPa) increased. The contact area/joint area ratio decreased with reduced calcaneal height, but the peak contact pressure remained almost constant. The width increases of the calcaneus somewhat limited the subtalar joint motion, especially for eversion; however, the height loss mostly resulted in subtalar rotatory instability. The height loss diminished the subtalar joint's stability in eversion, internal rotation, and external rotation. The results of the present study support the advisability of surgery for these complex injuries. Reestablishing the calcaneal height and width could restore the normal kinematics and contact stress distribution in the subtalar joint, improve the tibiotalar position, and diminish long-term degeneration in the ankle. (C) 2016 by the American College of Foot and Ankle Surgeons. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据