3.8 Proceedings Paper

Advancing Pancreas Segmentation in Multi-protocol MRI Volumes Using Hausdorff-Sine Loss Function

期刊

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/978-3-030-32692-0_4

关键词

Automatic pancreas segmentation; Energy-minimisation; MRI; Hausdorff loss function

向作者/读者索取更多资源

Computing pancreatic morphology in 3D radiological scans could provide significant insight about a medical condition. However, segmenting the pancreas in magnetic resonance imaging (MRI) remains challenging due to high inter-patient variability. Also, the resolution and speed of MRI scanning present artefacts that blur the pancreas bound-aries between overlapping anatomical structures. This paper proposes a dual-stage automatic segmentation method: (1) a deep neural network is trained to address the problem of vague organ boundaries in high class-imbalanced data. This network integrates a novel loss function to rigorously optimise boundary delineation using the modified Hausdorff metric and a sinusoidal component; (2) Given a test MRI volume, the output of the trained network predicts a sequence of targeted 2D pancreas classes that are reconstructed as a volumetric binary mask. An energy-minimisation approach fuses a learned digital contrast model to suppress the intensities of non-pancreas classes, which, combined with the binary volume performs a refined segmentation in 3D while revealing dense boundary detail. Experiments are performed on two diverse MRI datasets containing 180 and 120 scans, in which the proposed approach achieves a mean Dice score of 84.1 +/- 4.6% and 85.7 +/- 2.3%, respectively. This approach is statistically stable and outperforms state-of-the-art methods on MRI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据