3.8 Proceedings Paper

A Cascaded Multi-modality Analysis in Mild Cognitive Impairment

期刊

MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019)
卷 11861, 期 -, 页码 557-565

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/978-3-030-32692-0_64

关键词

Mild Cognitive Impairment; GCN; RNN

向作者/读者索取更多资源

Though reversing the pathology of Alzheimer's disease (AD) has so far not been possible, a more tractable goal may be the prevention or slowing of the disease when diagnosed in its earliest stage, such as mild cognitive impairment (MCI). Recent advances in deep modeling approaches trigger a new era for AD/MCI classification. However, it is still difficult to integrate multi-modal imaging data into a single deep model, to gain benefit from complementary datasets as much as possible. To address this challenge, we propose a cascaded deep model to capture both brain structural and functional characteristic for MCI classification. With diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data, a graph convolution network (GCN) is constructed based on brain structural connectome and it works with a one-layer recurrent neural network (RNN) which is responsible for inferring the temporal features from brain functional activities. We named this cascaded deep model as Graph Convolutional Recurrent Neural Network (GCRNN). Using Alzheimer's Disease Neuroimaging Initiative (ADNI-3) dataset as a test-bed, our method can achieve 97.3% accuracy between normal controls (NC) and MCI patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据