4.3 Article

Coupled thermo-physical behaviour of an inorganic intumescent system in cone calorimeter testing

期刊

JOURNAL OF FIRE SCIENCES
卷 35, 期 3, 页码 207-234

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0734904117701765

关键词

Inorganic intumescent coating; cone calorimeter; finite element analysis

资金

  1. Korean Ministry of Public Safety and Security

向作者/读者索取更多资源

This article examines the thermo-physical behaviour of an inorganic-based intumescent coating, tested with bench-scale cone calorimetry, in order to promote the understanding of its intumescence and to contribute to the optimisation of its thermal insulation performance. In the test, the specimen underwent the following phenomena simultaneously: (1) thermo-kinetic endothermic water vaporisation; (2) formation of micro-scale pores in its internal volume; (3) expansion of its volume; (4) variations in thermal boundaries. These simultaneous phenomena cause several changes in internal-external conditions given to the test sample: (1) loss of mass (water molecules); (2) reduction of effective thermal conductivity owing to its porous structure; (3) increase in length of the conductive heat transfer path across its expanding volume; (4) irradiance intensification and additional heat transfer generation on its moving boundaries, exposed to the heat source and surroundings. This interacting thermo-physical behaviour impedes the heat transfer to the underlying substrate. It is therefore comprehensively explained by finite element analysis, associated with the experimental data obtained from a thermogravimetric analyser, differential scanning calorimetry, electric furnace and cone calorimeter tests. The numerical predictions agreed with the physical measurements with consistent accuracy, in terms of both histories of substrate temperature and coating-thickness expansion. This combined numerical-experimental approach enables clear interpretation on the process of intumescence, the impediment mechanism of heat transfer and the critical factors of the material's behaviour.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据